Real Rate

Explainable Artificial Intelligence (XAI) in Ratings

Dr. Holger Bartel, CEO <u>www.RealRate.de</u>

28.10.2020

KI Community Meetup (Online)

Agenda

- 1) About RealRate
- 2) Causality Examples
- Causal Analysis: Total Derivatives and Graph Theory
- 4) Causing Software
- 5) Application: Insurer's Financial Strength Ratings

Part 1

About RealRate

Al Ratings

- Fully automated company ratings
- Financial strength
- Fair Explainable AI (XAI)
- Explainable within 2 min
- No conflict of interest

Business Model

- Selling seals of approval to companies for marketing / branding
- Automated report generation
- Highly scalable

Competitors

- Big Three: S&P, Moody's, Fitch
- Locals GER: Assekurata, Morgen&Morgen

Moody's

FitchRatings

Milestones

- Dec 2016: Founded in Germany
- Oct 2019: Going live <u>RealRate.de</u>
- Nov 2019: First customers
- Oct 2020: Accelerators: SBC, GSD

Next:

• Scale up over industries, entering US market

Awards

- Mar 2020: Top German Al startup by <u>appliedAl</u>
- Oct 2020: Winner <u>PyTorch Al Hackathon</u>
- Oct 2020: Top 25 <u>Insurtech CEOs</u> 2020
- Nov 2020: "Most Innovative Fully-Transparent AI Ratings Provider" by <u>EU Business News</u>

Founders

Dr. Holger Bartel, CEO (<u>CV</u>)

- Fintech founder (Prozentor, DigiOptions)
- Insurance manager (Gothaer, ERGO)

Harald Bartel, CMO, CTO (CV)

- Fintech founder (Prozentor, Adspert)
- CTO at Adspert

Prof. Dr. Mirko Kraft, Advisor (<u>CV</u>)

- Coburg University
- Insurance and Risk Management

Part 2

Causality Examples

Self-Driving Cars

Bank Loans

Part 3

Causal Analysis: Total Derivatives and Graph Theory

Causal Graph (1/2)

- Causal graph shows <u>causal dependencies</u> between variables (vertices / nodes).
- Arrows (edges / vertices) are causal <u>directions</u>
 "→" instead of symmetric correlations.
- Causal graph of direct effects is a <u>structural</u> model, total effects are reduced form model.
- A means for explainable artificial intelligence (XAI) in neural networks

Causal Graph (2/2)

Each arrow indicates a direct cause. Example:

- D depends on A, B, C.
 C depends on B, D.
 A and B are independent.
- A, B exogenous (no arrow in).
 C, D endogenous.
- Cyclic graph since C, D cause each other

Causal Analysis

- Causal analysis of sensitivity: <u>Effect</u> of a variable on another
- <u>Mediation</u> analysis: Decomposition of effects over child variables

Effect Formulas

Total exogenous and endogenous effects:

$$E_{x} = (I_{n} - M_{y})^{-1} M_{x}$$
$$E_{y} = (I_{n} - M_{y})^{-1} (I_{n} \circ (I_{n} - M_{y})^{-1})^{-1}$$

<u>Mediation</u> exogenous and endogenous effects on y_j:

$$F_{x}^{j} = \left(\left(\left(I_{n} - M_{y} \right)^{-1} \right)_{(j)}^{T} \mathbf{1}_{(m)} \right) \circ M_{x}$$

$$F_{y}^{j} = (1_{nn} - I_{n}) \circ \left[\left(\left(I_{n} - M_{y11} \right)^{-1} \right)_{(j)}^{T}, \dots, \left(\left(I_{n} - M_{ynn} \right)^{-1} \right)_{(j)}^{T} \right] \circ M_{y}$$

Example (1/7)

- $y_1 = x_1$ $y_2 = 2y_1^2 + x_2$ $y_3 = y_1 + y_2$ Note: read (=) as (\leftarrow)
- Exogenous $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Solution $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 20 \\ 23 \end{bmatrix}$
- Partial graph: denote edges by non-zero partial derivatives M_x , M_y at ${f x}$

Example (2/7)

• Simple nonlinear, acyclic system with nonconstant matrix of partial derivatives:

$$M_{x} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}^{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$(n \times m) \qquad \qquad M_{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{y}^{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 4x_{1} & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 12 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

 Proxy: original model is neither linear nor homogeneous (dependence on individual x)

Example (3/7)

- Total graph: denote edges by non-zero total effects $E_{\mathbf{x}},\,E_{\mathbf{y}}$ at \mathbf{x}
- Don't show total own effects
 (≡ 1)
- More arrows than partial graph because of indirect effects

Example (4/7)

- Mediation analysis for final variable y_j with j = 3
- Mediation effect: is total effect, partitioned over all outgoing edges
- Mediation graph: denote edges by non-zero mediation effects F^j_x, F^j_y at own effects are defined to be zero, denote nodes by total effects

Mediation Graph

Example (5/7)

Total Effects:

$$\begin{split} \mathbf{E}_{\mathbf{x}} &= \left(\mathbf{I}_{\mathbf{n}} - \mathbf{M}_{\mathbf{y}}\right)^{-1} \mathbf{M}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 12 & 1 & 0 \\ 13 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 4y_{1} & 1 \\ 4y_{1} + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 12 & 1 \\ 13 & 1 \end{bmatrix} \\ \mathbf{E}_{\mathbf{y}} &= \left(\mathbf{I}_{\mathbf{n}} - \mathbf{M}_{\mathbf{y}}\right)^{-1} \left(\mathbf{I}_{\mathbf{n}} \circ \left(\mathbf{I}_{\mathbf{n}} - \mathbf{M}_{\mathbf{y}}\right)^{-1}\right)^{-1} \end{split}$$

$$E_{y} = \begin{pmatrix} I_{n} - M_{y} \end{pmatrix} \begin{pmatrix} I_{n} & 0 & (I_{n} - M_{y}) \end{pmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 4y_{1} & 1 & 0 \\ 4y_{1} + 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 12 & 1 & 0 \\ 13 & 1 & 1 \end{bmatrix}$$

Example (6/7)
Mediation Effects:

$$F_x^3 = \left(\left(\left(I_n - M_y \right)^{-1} \right)_{(3)}^T \mathbf{1}_{(m)} \right) \circ M_x$$

$$= \begin{bmatrix} 13 & 13 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$F_y^3 = (\mathbf{1}_{nn} - I_n) \circ \left[\left(\left(I_n - M_{y11} \right)^{-1} \right)_{(3)}^T, \dots, \left(\left(I_n - M_{ynn} \right)^{-1} \right)_{(3)}^T \right] \circ M_y$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 12 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Part 4

Causing Software

Causing Software

- Causing: CAUsal INterpretation using Graphs <u>https://github.com/HolgerBartel/Causing</u>
- Real World Example: Wages of young American workers <u>https://github.com/HolgerBartel/Causing/blo</u> <u>b/master/education.md</u>

Part 5

Application: Insurance Financial Strength Ratings

Application: Insurance Ratings

- Application to financial strength ratings of German life insurers
- Model equations from expert system
- Holistic approach instead of just key figures
- Public input data from balance sheet
- Revaluation to market values
- Simple: no simulation, no cash flows
- Final variable is economic capital ratio (ökonomische Eigenkapital-Quote, ökEK)

Economic Balance Sheet

Model Equations (1/2)

- 1) EK = EKoGRNV + GR + NV
- 2) VerfRfB = FreieRfB + SÜAF
- $3) \quad DR = HGBDR ZZR$
- 4) MRZ = (ZA ZZRA) / DR
- 5) KE = KAE KAA
- $\mathbf{6)} \quad \mathsf{ZE} = \mathsf{KE} \mathsf{ZA}$
- 7) JUV = JU + GewAb + Steuer
- 8) $R\ddot{U} = J\ddot{U}V + ZRfB + DG$
- 9) RÜE = RÜ ZE
- 10) BABRate = ZVF / (DR + FLV)
- 11) D = 1 / (BABRate + R)
- 12) KA = BWKA + ABWR

- 13) Assets = BS + ABWR
- 14) MWDR = DR * (1 + D*(MRZ-R))
- **15)** ZÜVT = RÜE * D
- 16) $Z\ddot{U}KA = DR MWDR + ZZR$
- 17) PBWR = ZÜKA + ZÜVT
- 18) Garantie = HGBDR PBWR
- **19)** $Z\ddot{U} = ABWR + PBWR$
- 20) GuO = ... see Bartel (2014)
- 21) ZÜVU = ZÜVUdet GuO
- **22)** ZUVN = ZU ZUVU
- 23) DT = TaxRate * ZÜVU
- 24) Puffer = ZÜVN + VerfRfB + DT

Model Equations (2/2)

- 25) ökEK = EK + ZÜVU DT
- 26) ökEK-Quote = ökEK / BS
- 27) SM = EK + VerfRfB + $Z\ddot{U}$
- 28) SM-Quote = SM / BS
- 29) NVZ = KE / BWKA
- **30)** GVZ = MRZ + ZÜVN / (DR * D)
- 31) SA = BS BWKA FLV
- 32) SP = BS EK VerfRfB HGBDR FLV

See Bartel, H. (2020) for abbreviations.

Example: Insurance Economic Capital

- Financial strength rating
- HUK-COBURG Lebensversicherung AG
- Accounting year 2017
- Mediation effects with respect to market mean

Graphical Causal Analysis (1/2)

Mediation graph for the economic capital ratio of HUK-COBURG Lebensversicherung AG, Accounting year 2017

"Risk and other result" is very **strong**, compared to average of German life insurers, increasing the final variable "economic capital ratio" by 1.79%-points.

Mediation Effects: Strengths

Größe°	Rang ¹	HUK	Markt ²	Effekt³ ökonomische Eigenkapitalquote
Quote HGB-Eigenkapital ohne GR und.	1	6,16%	1,73%	4,43%
Quote HGB-Eigenkapital	1	6,37%	2,29%	4,08%
Quote zukünftige pass. vt. Übersch.	4	17,34%	7,87%	1,94%
Quote Risiko- und Übriges Ergebnis	5	1,37%	0,68%	1,79%
Quote passivische Bewertungsreserv.	6	11,64%	4,55%	1,45%
Quote zukünftige Überschüsse	16	19,71%	15,88%	0,78%
Quote zukünftige Aktionärsgewinne	17	4,77%	3,91%	0,64%
Quote Zinsszusatzreserve	14	6,63%	5,71%	0,21%
Quote Zahlungen Versicherungsfälle	51	5,33%	6,59%	0,14%
Quote Genußrechte	4	0,14%	0,00%	0,14%

⁰ Ratio with respect to total assets

- ¹ out of 59 insurers, descending order
- ² Median
- ³ Change in percentage points

Mediation Effects: Weaknesses

Größe°	Rang ¹	HUK	Markt ²	Effekt³ ökonomische Eigenkapitalquote
Quote sonstige Passiva	3	13,14%	5,04%	0,00%
Quote Buchwert Kapitalanlagen	22	94,35%	92,17%	-0,01%
Quote Fondsgebundene LV	45	1,67%	4,59%	-0,02%
Quote Schlussüberschussanteil-Fond.	56	0,18%	1,54%	-0,04%
Quote freie RSt für Beitragsrücker.	57	0,41%	2,12%	-0,04%
Quote verfügbare RfB	59	0,59%	3,73%	-0,08%
Quote latente Steuern	17	1,19%	0,98%	-0,21%
mittlerer Tarifrechnungszins	14	3,27%	3,02%	-0,45%
Quote zukünftige pass. Zinsübersch.	52	-5,69%	-3,09%	-0,53%
Quote aktivische Bewertungsreserve.	47	8,07%	10,51%	-0,55%

⁰ Ratio with respect to total assets

- ¹ out of 59 insurers, descending order
- ² Median
- ³ Change in percentage points

Market Plot: Top Strength

Market Plot: Top Weakness

Example Summary

- Company's economic capital: 938 Mio. Euro.
- Economic capital ratio: 9,95%.
- First place of 59 German life insurers.
- Top strength: Statutory equity
- Top weakness: Hidden reserves

References

- Bartel, H. (2014) "Simple Solvency Ein Solvenzmodell f
 ür deutsche Lebensversicherer", <u>www.researchgate.net/publication/267337608</u>
- Bartel, H. (2019) "Kausale Analyse von Gleichungssystemen mit strukturellen neuronalen Netzen",

www.researchgate.net/publication/335099531

 Bartel, H. (2020) "Causal Analysis – With an Application to Insurance Ratings", <u>www.researchgate.net/publication/339091133</u>